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Abstract—The speed and levels of integration of modern
devices have risen to the point that arithmetic can be performed
very fast and with high precision. Precise arithmetic comes at
a hidden cost—by computing results past the precision they
require, systems inefficiently utilize their resources. Numerous
designs over the past fifty years have demonstrated scalable ef-
ficiency by utilizing approximate logarithms. Many such designs
are based off of a linear approximation algorithm developed by
Mitchell. This paper evaluates a truncated form of binary loga-
rithm as a replacement for Mitchell’s algorithm. The truncated
approximate logarithm simultaneously improves the efficiency and
precision of Mitchell’s approximation while remaining simple to
implement.

Index Terms—Truncated approximate binary logarithms, log-
arithm generation, anti-logarithm generation, computer arith-
metic, mixed precision.

I. INTRODUCTION

The speed and levels of integration of modern devices
have risen to the point that arithmetic can be performed in
hardware with high precision. While precise arithmetic is
important for some applications, computing past the precision
that applications require wastes power. Due to the increasing
importance of power-efficient execution, such inefficiencies
will become problematic for future power-constrained devices.

It has long been recognized that approximate binary log-
arithms can simplify costly arithmetic operations. Mitchell’s
algorithm [1] uses a linear approximation to estimate log
conversion through leading-one detection and a series of shifts.
Variants of Mitchell’s linear approximation have been used to
reduce the cost of multiplication, division, power, and square
root [2], [3], [4]. However, Mitchell’s approximation does
not provide sufficient precision for many applications, and
conversion to and from Mitchell’s approximate logarithms still
requires significant effort.

Much prior literature focuses on improving the precision of
Mitchell’s approximation [2], [5], [4], [6], [7]. While these
designs address the limited precision of the algorithm, they
typically add to its area, latency, and power consumption.
This work extends Mitchell’s approximation, simultaneously
improving its efficiency and precision. The algorithm con-
sidered in this paper is also amenable to error-correcting
circuits similar to those used in prior work, further improving
the precision of approximation while maintaining superior
efficiency.

Cost savings can be achieved over Mitchell’s original ap-
proximation by truncating the least-significant bits of its frac-
tional term. Such modified approximate logarithms are referred
to as truncated approximate logarithms and are the main focus
of this work. Section II describes Mitchell’s approximation.
The theory, cost, delay, and precision of truncated logarithms

are discussed in Section III. Section IV explores how to im-
prove the precision of truncated logarithms, both through prior
as well as novel methods, and Section V evaluates truncated
approximation as a replacement for Mitchell’s algorithm.

II. CONCEPTS AND BACKGROUND

Traditional approaches to approximate logarithmic conver-
sion are reviewed. To perform high-level analysis of the cost
and delay required by different components, this study makes
use of a simple unit gate model described in Section II-A.
The formation and precision of Mitchell’s approximation are
described in Section II-B, and its cost and delay are analyzed
in Section II-C.

A. Unit Gate Model

Analyses in this paper make use of a simple unit gate
model that characterizes each design element according to
two metrics. The first is an abstract concept of cost, denoted
by C, which is assumed to be proportional to both area and
dynamic power consumption. The second is time, T , which
is proportional to the delay of a design element. While the
model roughly estimates the real cost for each component, it
is useful for high-level analysis and does not depend strongly
on any one technology generation, design tool, or cell library.
Some basic assumptions of the unit gate model follow.
• Simple 2-input gates (AND, OR) [C = 1, T = 1]

• 2-input XOR gates, MUXes, and HA cell [C = 2, T = 2]

• m-input gates composed of a tree of 2-input gates
The unit gate model takes inversion and buffering to be free,

both for simplicity and because synthesis tools add an element
of uncertainty to the cost of these tasks. Also, circuits with low
fan-outs that require minimal buffering are chosen to mitigate
the impact of this simplifying assumption. The pre-charging of
cell inputs is not taken into account for simplicity. Due to the
complexities of circuit routing, wiring costs are not considered.

B. Mitchell’s Logarithm Generation

A brief description of approximate logarithm generation
follows, with an emphasis on Mitchell’s approximation. The
reader is referred to [1] for a more detailed explanation of
Mitchell’s method. Any fixed-point binary input, X , may be
expressed as X = 2k ∗ (1+f), where 0≤f <1. The value
of k is referred to as the characteristic of X and is the
position of the leading 1 in its unsigned binary representation
(0<k<log2(X)). The value f is referred to as the fractional
component of the resultant logarithmic approximation and
is formed by normalizing all non-leading bits to form a
binary fraction. Given the values of k and f that uniquely



determine X , the binary logarithm of X may be expressed as
log2(X) = k+log2(1+f).

The values of k and f for an input X can be found using
a leading-one detector, binary encoder, and shifter as shown
in Figure 1a. Conversion back to binary from an approximate
binary logarithm involves shifting (Figure 1b). The cost and
delay of each component in Mitchell’s algorithm are analyzed
in the subsections that follow.

Given k and f , the complexity of determining log2(X)
is dominated by the term log2(1+f), which itself requires
the calculation of a binary logarithm. Approximate binary
logarithmic approaches typically concern themselves with how
to approximate log2(1+f) with the highest precision and least
cost. Mitchell estimates log2(1+f) using a single straight-
line approximation to the logarithm curve, f ≈ log2(1+f).
Figure 2a illustrates this straight-line approximation. The
notation log2-M (X) is used throughout the remainder of the
paper to denote Mitchell’s approximation of log2(X).

Mitchell’s algorithm always underestimates the value of
log2(X) as can be seen from Figure 2. The maximum ab-
solute error of Mitchell’s approximation relative to log2(X)
is -0.08639. This error is independent of the value of k
and occurs at f = 0.4427. The average error of Mitchell’s
approximation can be found through numerical integration to
be -0.05731. This value is denoted by a horizontal dotted
grey line in Figure 2b. The relative error of Mitchell’s
approximation decreases at larger values of k; its maximum
over all values of k and f is -5.792% (at k=0, f=0.3591).

C. Cost of Mitchell Approximation

Mitchell’s linear approximation approximates log (and anti-
log) conversion using a leading-one detector, a binary encoder,
and a series of shifters. The cost and delay of each component
are analyzed in the following sections in order to form an
analytical model for Mitchell’s method.

1) Leading-One Detection: Leading-one detection can be
implemented by passing the reversed, inverted input signal
through a parallel AND prefix tree [8]. Approximate loga-
rithmic conversion is likely to be on the critical path so a
minimum-depth prefix graph is assumed. To provide conser-
vative analyses later in the paper, a Kogge-Stone style prefix
tree [9] is chosen for the cost model. Under the unit gate
model, the cost of this prefix graph is maximal among all
minimum-depth prefix graphs [10]. This ensures that the cost
of leading-one detection is not underrepresented relative to
the log and anti-log conversion shifters. The cost and delay of
leading-one detection are given by (1) and (2).

CLOD-M(n) = CAND ∗
log2(n)−1∑

i=0

n

2
= CAND ∗ n

2
∗ log2(n) (1)

TLOD-M(n) = TAND ∗ log2(n) (2)

2) One-Hot to Binary Encoder: The output of the
leading-one detector is a one-hot encoded signal. In order
to extract the characteristic, this signal is encoded into an
unsigned binary value. One way to do this is with log2(n)
n
2 -input OR gates [8]. Such an encoder is illustrated for 8 bits
in Figure 3. Under the unit gate model, each n

2 -input OR gate
is formed out of

(
n
2 −1

)
2-input OR gates. This leads to the
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Fig. 3. An 8-bit one-hot to binary encoder.

cost and delay given by (3) and (4).

CENC-M(n) = COR ∗ log2(n) ∗
(n
2
− 1
)

(3)

TENC-M(n) = TOR ∗ (log2(n)− 1) (4)

3) Approximate Logarithm Shifter: Following leading-
one detection and the conversion of the characteristic into
a binary number, a shifter is used to extract the (n−1)-bit
fractional component (f ) from X . Figure 4a shows a parallel
prefix diagram of the 15-bit combinational shifter used for a
16-bit system. Black nodes represent two-input multiplexers,
which are controlled by the (unsigned binary) shift amount.
Some internal simplification occurs in the shifter due to the
fact that constant 0 values are propagated into the least-
significant bits of a shifted output. To account for this, grey
nodes represent AND gates whose second input is connected
to the inverted shift signal.

A shifter is determined by two parameters: its width, n, and
its depth, d. The depth of a shifter is equivalent to the width
of its binary shift amount. The number of black nodes at level
i of Mitchell’s (n−1)-bit combinational shifter is given by
bSHIFT-M(i, n) = n−2i−1 such that the total number of black
nodes in a shifter with depth d, BSHIFT-M(n, d), is given by
(5). As such, the shifter used for approximate logarithm gener-
ation has BSHIFT-M(n, log2(n))=n∗log2(n)−log2(n)−n+1
black nodes.

BSHIFT-M(n, d) =

d−1∑
i=0

bSHIFT-M(i, n) = d ∗ n− 2d − d+ 1 (5)

The number of grey nodes at level i of Mitchell’s log shifter,
g(i) is given by gSHIFT-M(i) = 2i such that the total num-
ber of grey nodes in a shifter with depth d, GSHIFT-M(d),
is given by (6). Accordingly, the number of grey nodes
used for shifting during approximate logarithm generation is
GSHIFT-M(log2(n))=n−1.

GSHIFT-M(d) =

d−1∑
i=0

gSHIFT-M(i) = 2d − 1 (6)

Equations (5) and (6) lead to the total cost of the approximate
logarithm shifter with depth d given by (7). Therefore, the
full-depth shifter used for logarithm conversion has a cost of
CSHIFT-M(n, log2(n))=CMUX∗(n∗log2(n)−log2(n)−n+1)+
CAND∗(n−1) with a delay given by (8).

CSHIFT-M(n, d)=CMUX ∗ (d ∗ n−2d−d+1)

+ CAND ∗ (2d−1) (7)
TSHIFT-M(n) = TMUX ∗ log2(n) (8)

4) Anti-Logarithm Conversion: The anti-logarithm of
a Mitchell approximation is formed by setting the bit that
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Fig. 2. The error in Mitchell’s log approximation. The dotted grey line in (b) denotes the average absolute error.
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Fig. 4. Combinational shifters for approximate logarithmic and anti-logarithmic conversion.

corresponds to the characteristic (2k) and inserting the frac-
tional component immediately after this bit. In practice, this
effect can be achieved by inserting a 1 value after the most-
significant bit of the fraction and right-shifting the concate-
nated value to the correct position. The concatenated value
needs to be shifted (n− k− 1) spaces to the right, a shift
amount equivalent to the one’s complement of k.

Figure 4b shows the shifter used to convert an approximate
16-bit multiplication back to binary1. Such an anti-logarithm
generator is selected because approximate logarithms are often
used to simplify multiplication. As before, black nodes repre-
sent two-input multiplexers. Grey nodes either represent AND
gates (some with a complemented input) or OR gates; in any
case, grey nodes all share the unit cost of a simple gate.

The number of black nodes at level i of the anti-
log conversion shifter is given by (9), such that the to-
tal number of black nodes in the anti-log shifter with
depth d, BALOG-M(n, d) is given by (10). As such,
the shifter used for approximate logarithm generation has
BALOG-M(n, log2(n)+1)=n∗log2(n)+n−3 black nodes.

bALOG-M(i, n) =

{
n− 2, if i = 0
n, if 0 < i < d
n− 1, if i = d

(9)

1The anti-log right shifter is shown as a left-shift of the reversed input.

BALOG-M(n, d) =

d−1∑
i=0

bALOG-M(i, n) = d ∗ n− 3 (10)

The number of grey nodes at level i of the anti-log con-
version shifter with depth d is given by (11) such that
the total number of grey nodes in the anti-log shifter,
GALOG-M(d), is given by (12). Accordingly, the number of
grey nodes used for approximate anti-logarithm shifting is
GALOG-M(log2(n)+1)=3∗n−log2(n)+1.

gALOG-M(i) =

{
3, if i = 0
2(i+1) − 1, if 0 < i < d
2i + 1, if i = d

(11)

GALOG-M(d) = 3 +

d−2∑
i=1

2(i+1) − 1 + 2(d−1) + 1

= 2d + 2(d−1) − d+ 2 (12)

Equations (10) and (12) can be combined to derive the total
cost and delay of the anti-log shifter, given by (13) and (14).

CALOG-M(n)=CMUX ∗ (n ∗ log2(n)+n−3)
+ CGATE ∗ (3 ∗ n−log2(n)+1) (13)

TALOG-M(n) = TMUX ∗ (log2(n) + 1) (14)

5) Total Cost of Mitchell Approximation: It can be seen
from Figure 1a that the critical path of Mitchell’s log gener-
ation goes through the leading-one detector, binary encoder,
and shifter such that the unit gate delay of the total circuit



is additive over these three components. This leads to the
total cost given by (15) and delay given by (16) for Mitchell’s
approximation. Appropriate values can be substituted from the
equations above and from the unit gate model.

CLOG+ALOG-M(n)=CLOD-M(n) + CENC-M(n)
+ CSHIFT-M(n) + CALOG-M(n) (15)

TLOG+ALOG-M(n)=TLOD-M(n) + TENC-M(n)
+ TSHIFT-M(n) + TALOG-M(n) (16)

The above cost and delay models are used in Section V to
explore the scaling properties of Mitchell’s algorithm and to
investigate the cost benefits of truncated logarithm generation.
Next, truncated logarithms will be described and an analytical
model will be derived for the cost and delay of truncated
conversion.

III. TRUNCATED LOGARITHMIC APPROXIMATION

The maximum absolute error in Mitchell’s fraction is be-
tween 2-3 and 2-4, yet at large input sizes many less-significant
bits are retained. Truncated logarithmic approximation is based
on the intuition that the size of an approximate fraction
should be proportional to its precision. Rounding off the least-
significant bits of approximate log and anti-log conversion
reduces their costs, and can actually be manipulated to improve
the average precision of the result.

The t-bit downward-rounded approximation of X ,
log2-T↓(X, t), is given by (17). Functionally, it is equivalent
to Mitchell’s approximation retaining only the t most-
significant fractional bits.

log2-T↓(X, t) = k + (f mod 2−t) ≈ log2(X) (17)

The t-bit upward-rounded approximation of X , log2-T↑(X, t),
is given by (18). Upward rounding may be desirable as it tends
to introduce positive error into the fraction. Since Mitchell’s
algorithm inherently underestimates the true logarithm, posi-
tive rounding counter-biases the truncated approximation. This
leads to an estimate that (for t≥4) has a maximum absolute
error no worse than Mitchell’s algorithm and also decreases
the average error relative to Mitchell’s approximation.

log2-T↑(X, t) = k + (f mod 2−t) + 2−t ≈ log2(X) (18)

While upward rounding has precision advantages, it requires
incrementation for proper operation (+2−t). The cost and
delay of this incrementation may be significant depending on
implementation details. The increment operation is ignored in
the cost and delay model below for two reasons. First, it may
be possible to subsume the incrementation into the approx-
imate functional unit. For example, a truncated approximate
constant multiplier could incorporate this increment into the
constant inputs of its internal adder. As such, it is difficult
to derive a proper cost and delay model without considering
the unit internals. Also, more precise extensions to Mitchell’s
algorithm often incorporate addition with a constant term; as
such, the costs of this incrementation may be agglomerated
with that of the error correction circuitry.

A visualization of upward and downward-rounded trunca-
tion is shown in Figure 5. It can be seen from Figure 5a that
the value of log2-T↑(X, t) always falls between Mitchell’s ap-
proximation and a shifted form of Mitchell’s curve. Likewise,
the value of log2-T↓(X, t) (Figure 5c) is bounded from above

by Mitchell’s approximation and from below by a shifted form
of the curve. These relationships are expressed in (19) and
(20). The absolute error of truncated approximation is similarly
bounded by an error envelope as shown by Figures 5b and 5d.
An upward-rounded approximate logarithm attains a maximum
positive error at f=0; this error falls linearly from the upper
error envelope to that of Mitchell’s estimate over each 2-t-
width interval. The error of a downward-rounded approximate
log attains a maximum negative error at the same point as does
Mitchell’s approximation (f=0.4427) and falls linearly from
the error of Mitchell’s estimate to the lower error envelope
over each 2-t-width interval.

log2-M (X)− 2-t ≤ log2-T↓(X, t) ≤ log2-M (X) (19)
log2-M (X) ≤ log2-T↑(X, t) ≤ log2-M (X) + 2-t (20)

A. Cost and Delay of Truncated Approximation

Truncated approximate logarithms use a similar conversion
process to Mitchell’s algorithm and can easily be incorporated
in a design as an improvement over Mitchell’s method. Cost
benefits result from a simplification of the truncated log and
anti-log shifters. Cost models for these two components are
derived below.

1) Truncated Logarithm Shifter: Truncation can signifi-
cantly reduce the cost of the log conversion shifter. Figure 6
shows a range of 16-bit truncated approximate logarithm
shifters. It can be seen that the number of both grey and black
nodes are greatly reduced relative to Mitchell’s approximation
(Figure 4a) for small truncation widths (t). Cost and delay
models for the truncated shifter follow.

The truncated logarithm shifter with depth d is
equivalent to Mitchell’s log shifter for the first
tb(n, t)=

⌊
log2(n)−log2

(
n
t

)⌋
levels. This design parameter

is referred to as the truncation boundary for the remainder
of the section and is used pervasively in the cost model. The
cost of any level, i, preceding the truncation boundary (i<tb)
is derived previously in Section II-B. Accordingly, only the
cost of the truncated log shifter at levels in the interval
tb ≤ i < log2(n) is derived below. This interval is referred
to as the truncation-specific region of the shifter. Both the
truncation boundary and the truncation-specific region are
illustrated for a truncated shifter (n = 16, t = 4) in Figure 6c.

It is noted that there are t total nodes in the last
level of the truncated log shifter and that each higher
level of the truncation-specific region has two times as
many nodes as the preceding one. This leads to a total
of tSHIFT-T(i, n, t)=2log2(n)−i−1∗t nodes (either black or
grey) at level i within the truncation-specific region. Ev-
ery level below the truncation boundary is composed en-
tirely of black nodes. The truncation boundary itself con-
sists of a number of black nodes followed by one or more
grey nodes. Equation (21) expresses this relationship, where
bSHIFT-T(i, n, tb, t) is the number of black nodes at level i
in the truncation-specific region and gSHIFT-T(tb, t) is the
number of grey nodes at the truncation boundary.

bSHIFT-T(i, n, tb, t)=

{
tSHIFT-T(i, n, t)

−gSHIFT-T(tb, t), if i = tb
tSHIFT-T(i, n, t), if tb<i<d

(21)

Only the first level of the truncation-specific region (the
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Fig. 5. The value and absolute error of truncated logarithmic approximation.

truncation boundary) contains any grey nodes. To determine
the number of grey nodes at this level, it is noted that the
position of the leading grey node on the truncation boundary
is lgSHIFT-T(tb)=2tb−1. The node at this position is grey,
and every existent node to the right of it is grey, as well.
The lowest existing node position on the truncation boundary
is referred to as the trailing node; its position is given by
tnSHIFT-T(tb, t)=2tb+1−t−1. The number of grey nodes on
the truncation boundary equals the number of nodes between
the leading and trailing node, given by (22).

gSHIFT-T(tb, t) = lgSHIFT-T(tb)−tnSHIFT-T(tb, t)+1

= t+ 1− 2tb (22)

Substituting (22) into (21) and summing over all levels
leads to the total number of black and grey nodes in the
truncated shifter, expressed by (23) and (24), respectively.
BSHIFT-M(n, d) and GSHIFT-M(d), which were derived previ-
ously for Mitchell’s approximation, are used for those levels
outside of the truncation-specific region.

BSHIFT-T(n, tb, t) = 2-tb ∗ n ∗ t+ tb ∗ n− tb− 2 ∗ t (23)
GSHIFT-T(tb, t) = 2tb − 2tb+1 + t+ 1 (24)

Equations (23) and (24) lead to the total cost of the truncated
approximate logarithm shifter, given by (25). Truncation leaves
the critical path of the approximate log shifter untouched.
As such, the delay remains the same as that of Mitchell’s
approximation and TSHIFT-T = TSHIFT-M.

CSHIFT-T(n, tb, t)=CMUX∗(2-tb∗n∗t+tb∗n−tb−2∗t)
+ CAND ∗ (2tb−2tb+1+t+1) (25)

2) Truncated Anti-Log Conversion: A truncated approx-
imate logarithm is converted back to binary in the same
manner as Mitchell’s approximation. However, due to the
truncated logarithm’s shorter fraction, the complexity of the
resultant anti-log shifter is greatly reduced. Figure 6d shows

the shifter used to convert the multiplication of two truncated
approximate logarithms (t = 4) back to binary. When com-
pared to Mitchell’s method (Figure 4b), it is apparent that the
truncated anti-log shifter has fewer total nodes and many fewer
black nodes. To illustrate how the cost of truncated anti-log
conversion changes with the truncation width, Figure 6b shows
a smaller and less precise truncated anti-log shifter (t = 2).

During anti-logarithmic conversion, black nodes represent
two-input multiplexers and grey nodes represent simple gates
(either AND or OR gates). The number of black nodes at level
i of the truncated anti-log shifter is given by (26) such that the
total number of black nodes in the anti-log shifter with depth
d, BALOG-T(n, d, t), is given by (27). As such, the shifter used
for approximate logarithm generation has
BALOG-T(n, log2(n)+1, t)= t∗log2(n)+t−1 black nodes.

bALOG-T(i, t) =
{
t− 1, if i = 0
t, if i > 0 (26)

BALOG-T(n, d, t) =

d−1∑
i=0

bALOG-T(i, t) = t ∗ d− 1 (27)

The number of grey nodes at level i of a truncated anti-log
shifter with depth d is given by (28); summation produces the
total number of grey nodes in the shifter, given by (29).

gALOG-T(i, d, t) =

{
3, if i = 0
2(i+1), if 0 < i < d
2i − t, if i = d

(28)

GALOG-T(n, t) = 4 ∗ n− t− 1 (29)

Equations (27) and (29) lead to the total cost of the truncated
approximate anti-logarithm shifter, given by (30). Truncation
does not change the critical path of the anti-logarithm circuit
such that TALOG-T=TALOG-M.

CALOG-T(n, t)=CMUX ∗ (t ∗ log2(n) + t− 1)
+ CGATE ∗ (4 ∗ n− t− 1) (30)
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Fig. 6. The impact of truncation on the shifters used for approximate logarithmic and anti-logarithmic conversion.

3) Total Cost of Truncated Log Approximation: Trun-
cated logarithmic approximation lessens the cost of Mitchell’s
log and anti-log conversion shifters; the other components
remain the same, as does the critical-path delay. This results
in the total cost and delay for a t-bit (t < n) truncated
logarithmic approximation given by (31) and (32). Models are
taken from the cost analysis of Mitchell’s approximation where
appropriate. Values may be computed from the cost and delay
models above, using the unit gate model.

CLOG+ALOG-T(n, t)=CLOD-M(n) + CENC-M(n)
+ CSHIFT-T(n, tb(n, t))
+ CALOG-T(n, t) (31)

TLOG+ALOG-T(n)=TLOD-M(n) + TENC-M(n)
+ TSHIFT-M(n) + TALOG-M(n) (32)

IV. ERROR BEHAVIOR AND CORRECTION

Because of its simplicity, Mitchell’s approximation is com-
monly used as the basis for more complex and precise
approximate logarithm generators. A popular approach is to
apply piecewise linear schemes to improve upon Mitchell’s
simple linear interpolation [2], [5], [4], [6], [7], with increased
implementation costs. It is demonstrated that truncated ap-
proximation is a viable replacement strategy for Mitchell’s
algorithm in such designs by showing that prior error cor-
rection schemes effectively correct truncated logarithms. In
addition, it is demonstrated that there exist truncation-specific
error correction circuits that improve the precision of truncated
logarithms while adding little cost or delay.

Truncated approximate logarithms are amenable to error

correction techniques that were originally applied to Mitchell’s
approximation. This reinforces the ability of truncated logs
to improve a Mitchell-based design without drastic changes
to the underlying circuitry. To demonstrate the application
of prior error correction techniques to truncated logs, the
well-known Mitchell-based correction applied by Combet et
al. [5] is applied to truncated logarithms. Figure 7a shows
the precision of the resultant circuit, and Figure 7b shows
the maximum and average absolute error at various truncation
widths. The precision benefits of increasing truncation widths
quickly diminish past the effective precision of the error
correction scheme. Combet’s scheme achieves 6 to 8 bits of
precision; choices of t past this point quickly lose utility.

It was noted previously that an upward-rounded approxi-
mate logarithm with t = 4 is more precise than Mitchell’s
algorithm. A simple error correction scheme for this design
replicates the tec most-significant bits of the truncated and
rounded fractional component, appending them to form a mod-
ified (t+tec)-bit fraction. Figure 7c shows that the resultant
absolute errors for this circuit are less than those of Mitchell’s
approximation or the upward-rounded truncated logarithm. An
exploration of the tec design space for this circuit is shown
in Figure 7d. Any design with tec > 2 improves upon the
maximum error of Mitchell’s algorithm, and larger tec values
lead to further precision improvements.

The preceding error correction circuit incurs minimal over-
head because the truncated logarithm’s short fraction makes
addition of the correction term with the fraction unnecessary—
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Fig. 7. Error correction applied to truncated logarithms.

TABLE I
PRECISION OF TRUNCATED MITCHELL ANALOGUES.

Technique Min.
Error

Max.
Error

Max. Abs.
Error

Average
Abs. Error

Mitchell -0.08639 0 0.08639 0.05731
log2−T↑(t=4) -0.08639 0.06250 0.08639 0.03457

log2−T↑+EC4(tec=2) -0.08126 0.07813 0.08126 0.02802
log2−T↑+EC4(tec=3) -0.06564 0.07031 0.07031 0.02384
log2−T↑+EC4(tec=4) -0.06089 0.06641 0.06089 0.02258

the two values need only be concatenated. In total, the
correction term requires tec XOR gates (for selective comple-
mentation) and it increases the length of the truncated fraction
passed to the anti-log shifter. The same error correction circuit
would not be cost efficient for Mitchell’s approximation—due
to the full length of Mitchell’s fraction, addition is necessary
for all useful correction terms. This demonstrates that there are
efficient error-correcting schemes that are specific to truncated
approximate logarithms. However, a full exploration of such
specialized error-correcting schemes is left for future work.

V. COST ANALYSIS OF A TRUNCATED MITCHELL
REPLACEMENT

The viability and cost savings of replacing Mitchell’s ap-
proximation with a truncated logarithm are considered. Table I
shows the precision of different truncated log designs with
worst and average precision equal to or better than Mitchell’s
approximation. Truncated logarithms with simple truncation-
specific error correction provide superior precision. Analyses
below demonstrate that these designs also offer significant cost
savings over Mitchell’s algorithm.

Figure 8c shows the superior scalability of a truncated loga-
rithm over Mitchell’s approximation. The relative cost savings
of truncation (at a fixed t) grow with the input length and range
from -34% (at n=16) to -52% (at n=128). Figure 8b shows
the added cost required for error correction during truncated

approximate logarithmic conversion. The costs are negligible
at large input sizes and represent at most a 8.765% increase
over log2−Tl (at n=16, t=4).

The delay of Mitchell’s approximation and truncated loga-
rithmic conversion are equal; both are given by Equation (16).
This delay increases logarithmically with increasing input
length. The error correction circuitry used for log2-T↑+EC4

adds a constant TXOR delay2. The impact of this extra XOR
gate delay is relatively minor—it incurs an 8% increase in time
at 16-bits, 6.452% at 32-bits, 5.405% at 64-bits, and 4.651%
at 128-bits.

The truncated log with t=4 is an appropriate replacement
for Mitchell’s algorithm. However, it was shown earlier (in
Section IV) that a larger truncation width is appropriate
once stronger error correction is applied. The cost savings
of truncated logarithms across a range of truncation widths
are explored in Figure 8c. Truncated log generation has
large cost savings over the 32-bit Mitchell approximation,
especially at small to moderate truncation widths. The cost
of a truncated log generator increases approximately linearly
past t = 4. Similar trends are found across different input
widths—Figure 8c shows a contour plot of the percent cost
savings due to truncation across different values of n and t. It
can be seen that truncated logarithms have a significant cost
advantage relative to Mitchell’s algorithm, especially at small
truncation widths or large input sizes. Past t = 4 to t = 8,
the cost of truncated log conversion increases approximately
linearly until converging with Mitchell’s algorithm at t=n.

VI. FUTURE RESEARCH

This paper presents an initial description and analysis of
truncated approximate logarithms. There are a number of
enticing areas of future exploration related to this research.

2In the log/anti-log; approximate unit internals are not considered.
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This paper compares against Mitchell’s algorithm and
demonstrates the use of truncation in piecewise linear-error
correction schemes. In addition to these linear methods, prior
work has sought to form approximate logarithms through
table-based approximations [11], [12], higher order interpo-
lation [13], and hybrid methods using both combinational and
table-based correction [14], [15]. The extension of truncation
to these domains may provide useful insight and could lead
to designs with superior precision proportionality.

Truncated logarithms not only reduce the cost of log and
anti-log approximation, but also simplify operations on the
numbers in approximate logarithmic form. This effect is not
considered or explored in this paper. Cost and error analysis
of common approximate operations (such as fixed-point mul-
tiplication and division) is an obvious extension of this work.

VII. CONCLUSION

Truncated approximate logarithms are a modification of
Mitchell’s algorithm for computing the approximate binary
logarithm. Truncated approximate logarithms decrease the cost
and improve the precision of Mitchell’s method, and can
serve as a drop-in replacement for circuits utilizing Mitchell’s
approximation, easing their adoption. In addition, it is shown
that truncated approximate logarithms are amenable to both
existing and truncation-specific error correction techniques.
Combining approximate logarithms with error correction could
lead to a family of designs that demonstrate superior precision
proportionality across a range of precisions.
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