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ABSTRACT
Because main memory is vulnerable to errors and failures, large-
scale systems and critical servers utilize error checking and correcting
(ECC)mechanisms tomeet their reliability requirements. We propose
a novelmechanism, Frugal ECC (FECC), that combines ECCwith fine-
grained compression to provide versatile protection that can be both
stronger and lower overhead than current schemes, without sacrific-
ing performance. FECC compresses main memory at cache-block
granularity, using any left over space to store ECC information. Com-
pressed data and its ECC information are then frequently read with
a single access even without redundant memory chips; insufficiently
compressed blocks require additional storage and accesses. As exam-
ples, we present chipkill-correct ECCs on a non-ECCDIMMwith×4
chips and the first true chipkill-correct ECC for×8 devices using an
ECCDIMM. FECC relies on a newCoverage-oriented-Compression
that we developed specifically for the modest compression needs of
ECC and for floating-point data.

Categories and Subject Descriptors
B.7.3 [Reliability and Testing]: Error-checking; B.3.2 [Memory
Structures]: Primary Memory

Keywords
memory, DRAM, reliability, ECC, compression

1. INTRODUCTION
Large-scale and mission-critical compute systems typically rely on

error checking and correcting (ECC)memory to achieve their reliability
goals. Without strong ECC, DRAM faults lead to frequent system-
level errors and failures, reducing availability and potentially corrupt-
ing computation [1, 2, 3, 4, 5]. ECC memory trades off redundant
storage, bandwidth, and energy for increased reliability. ECC memo-
ries typically employ ECC DIMM (Dual In-line Memory Modules) that
have 12.5% more DRAM chips than non-ECC DIMMs; hence ECC
typically adds a 12.5% capacity, bandwidth, and energy overheads. In
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this paper we present a novel approach tomanaging ECC storage that
offers new tradeoffs between reliability, performance, and efficiency.
Frugal ECC combines a new compression approach with carefully se-
lected ECC codes to provide benefits that exceed those of other re-
cently published techniques that aim to reduce the overheads of ECC
protection [6, 7, 8, 9, 10].

While 12.5% redundancy has become a de facto standard, the type
of error and fault modes that are common to current DRAM parts
pose significant challenges for efficient and effective ECCmemory de-
sign. For example, several recent works demonstrate that to achieve
required levels of reliability and availability, a strong form of ECC
known as chipkill-correct or single-device data correction (SDDC),1 is
highly desirable [1, 2, 3, 4, 5, 15]. However, truly achieving this level of
reliability necessitates compromises in memory system design, such
as usingwide 128-bit channels or using narrow x4DRAMchips. With
a large fraction of systempower consumedby thememory system [16],
these compromises can translate into significant performance and en-
ergy inefficiencies.

Recent ECC approaches attempt to improve reliability while stay-
ingwithin the boundof acceptable systemparameters (64-bitmemory
data channels and near-12.5% redundant storage and bandwidth) by
introducing new reliability and performance tradeoffs [6, 8, 7, 9, 10,
11]. One example is the use of ECC codes that do not precisely match
the definition of chipkill-correct but still correct the vast majority of
single chip errors [9, 10]; we refer to this class of codes as chipkill-level
protection. Another example is the use of multi-tier codes in which
a first ECC code is used for detection and a second code is used for
correction [7, 9, 10]. We discuss the reliability and performance impli-
cations of these organizations and investigate other key tradeoffs in
detail in Section 2.

We present Frugal ECC (FECC), an adaptive and strong ECC tech-
nique that relies on opportunistic compression to offer an entirely
new set of tradeoffs between reliability and ECC overheads. FECC
can even eliminate the need for specialized components and redun-
dant DRAM devices without sacrificing reliability or performance ef-
ficiency. The insight behind FECC follows recent works which ob-
serve that compression at the cache-block granularity can free up
enough space for other information [17, 18]; we use this free space for
storing the ECC codes. Thus, when compression succeeds, FECC can
match the performance of a conventional ECC organization that uses
dedicated ECC memory devices with less, or even zero, dedicated re-
dundancy. While the concept is simple, we introduce two innovations
that are crucial to make FECC truly effective.

First, we develop a new compression scheme, Coverage-oriented
Compression (CoC) thatmaximizes the fraction of blocks that compress

1Chipkill-correct protection is referred to as Chipkill, Single Device
Data Correction (SDDC), extended ECC, and ChipSpare protection
by IBM, Intel, Sun (now Oracle), and HP, respectively [11, 12, 13, 14].
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Figure 1: A comparison between FECC and existing ECC memory.

just enough for ECC rather than needlessly aiming for greater levels of
compression. Specifically, CoC introduces new compression schemes
for floating-point data and for memory blocks with heterogeneous
data types (e.g., mixed floating-point and integer values), as well as
mechanisms for more effectively representing a mix of compression
schemes and tuning compression parameters. Prior memory com-
pression techniques do particularly poorly with floating-point data—
a significant problem forHPCworkloads thatwe remedy. The second
important innovation is how to protect poorly compressed blocks.
Not all memory blocks are sufficiently compressible and some blocks
fail to yield enough spare footprint for the redundant information. To
address these compression exceptions, FECC applies different ECC lay-
outs and protects its layout meta-data separately to guarantee up to
true chipkill-correct protection (Figure 1).
We show that combining careful layout with CoC simultaneously

achieves superior reliability and lower overheads when compared to
state-of-the-art single and multi-tiered ECC mechanisms. We per-
form our evaluation across a large suite of benchmarks, which include
floating-point heavy programs from the NAS Parallel Benchmarks
and SPLASH2X and SPECFP 2006 suites, and evaluate reliability in
the context of large-scale systems. To summarize our contributions
and results:

• We describe and evaluate Coverage-oriented Compression for
cache blocks and demonstrate that utilizing a new flexible-
granularity compression scheme with a unique variable-length en-
coding results in only a small fraction of compression exceptions
across a large set of both integer and floating-point-heavy bench-
marks. CoC can sufficiently compress 84% of all accesses in SPEC
Int, 93% in SPEC FP, 95% in SPLASH2X, and nearly 100% in the
NPB suites.

• We present the mechanisms and layout for storing and protect-
ing compression-exception blocks without degrading reliability;
we then show that the new Frugal ECC organizations yield su-
perior reliability to their traditional counterparts across a range
of recently-described ECC codes, including Multi-ECC [10] and
Bamboo-ECC [19]. In fact, by combining the FECC mechanism
with a strong Bamboo-ECC code, we demonstrate the first true
chipkill-correct memory system with ×8 DRAM devices and a 72b
channel.

• We are the first to directly compare the expected reliability of sev-
eral recent ECC schemes. We also evaluate the performance and
energy impact of different ECC schemes and show that FECC can
significantly improve system efficiency while only marginally im-

pacting performance and while fully maintaining the reliability of
the underlying ECC code.

The paper proceeds as follows. We first review previous ECC and
compression work in Section 2. Section 3 provides an overview of
howFECC enables a rich set of reliability tradeoffs. Section 4 and Sec-
tion 5 describe compelling ECCorganizations and the novel coverage-
oriented compression scheme used in FECC. Section 6 investigates
the effectiveness of CoC compression and evaluates the reliability,
performance, and energy impacts of FECC. Finally, Section 7 de-
scribes exciting future research avenues and Section 8 concludes the
paper.

2. BACKGROUND
This section reviews the concepts and terminology that are funda-

mental to a full description and evaluation of FECC. Brief introduc-
tions to ECC and main memory compression are presented below.

2.1 Memory ECC
ECC schemes differ in their error detection and correction capabil-

ities, the amount of redundant storage they require, their access gran-
ularity, and where they locate their redundant information. Chipkill-
correct ECCs can tolerate a single failing chip, and there are many
slightly weaker chipkill-level ECC implementations which can be cat-
egorized based on the width of the DRAMchips they can fully protect.
The following subsections andTable 1 list some of themost important
and efficient chipkill and chipkill-level ECC schemes.

2.1.1 ×4 Chipkill-correct:
An old and well-known×4 chipkill-correct scheme applies a 4-bit

Reed-Solomon (RS) code over a 144-bit data interface that is built
from two 72-bit ECC DIMMs [20, 21]. This scheme utilizes 4 check
symbols (and 16 bits of redundancy) to correct all single-chip errors
and detect all double-chip errors. Virtualized ECC (VECC) [7] is a
multi-tiered variant that can provide chipkill-correct on a wider vari-
ety of memory module organizations. VECC can provide×4 chipkill
on a 128-bit data interface (two non-ECC DIMMS), by virtualizing
and storing 3 check symbols elsewhere in the memory space as data.
Two separate accesses are required for each access to memory—one
for data and the other for redundancy—though caching theECC infor-
mation is often effective and helps to reduce the performance impact
of the additional memory traffic. Alternatively, VECC can separate
the codes used for error detection and correction and can use a 136-
bit data interface (built from one 72-bit ECC DIMM and one 64-bit
non-ECCDIMM) to provide chipkill-correct without needing two ac-
cesses in the common case. In this organization, VECC virtualizes a
one-symbol error correcting code and stores it elsewhere in the mem-
ory space as data, but this secondary code needs only be accessed in
the rare case when errors are detected (or upon a memory write, as it
must be updated). Other approaches exist, similar to VECC, that em-
bed ECC data elsewhere in the memory space to allow amore flexible
use of non-ECCmemorymodules [6, 8]. This paper focuses on VECC
as a representative for these approaches due to its clear and open de-
scription.

To prevent performance degradation from larger access granu-
larities, the most aggressive and the state-of-the-art schemes can
correct a single ×4 chip error [11] or a single-chip-error/two-pin-
errors [19] on a 72-bit ECC DIMM. These approaches rely on 8-bit
Reed-Solomon codes, reducing the redundancy for a single ×4 chip
correction down to 8 bits. They have slightly degraded detection cov-
erage for double chip errors, as they can only detect 98.9999996% (but
not 100%) of such errors.



×4 Chipkill ECCs

ECC Channel
width Protection Overheads

Chip Storage Access

S4SC-D4SD 144-bit 1 chip correct - 2 chip detect 12.50% 12.50% None
V-ECC 136-bit 1 chip correct - 2 chip detect 6.25% 9.38% W
V-ECC 128-bit 1 chip correct - 2 chip detect 0.00% 9.38% R/W

AMD 72-bit 1 chip correct 12.50% 12.50% None
QPC 72-bit 1 chip correct 12.50% 12.50% None

FECC+Multi1 64-bit Almost 1 chip correct 0.00% 7.25% R/W (Exception)
FECC+QPC 64-bit 1 chip correct 0.00% 13.50% R/W (Exception)

×8 Chipkill ECCs

ECC Channel
width Protection Overheads

Chip Storage Access

OPC 144-bit 1 chip correct 12.50% 12.50% None
V-ECC 144-bit 1 chip correct - 2 chip detect 12.50% 18.75% W
V-ECC 128-bit 1 chip correct - 2 chip detect 0.00% 18.75% R/W

LOT-ECC 72-bit Most 1 chip correct 12.50% 26.50% None
Multi-ECC 72-bit Almost 1 chip correct 12.50% 12.90% W
FECC+OPC 72-bit 1 chip correct 12.50% 26.00% R/W (Exception)
FECC+Multi 64-bit Almost 1 chip correct 0% 13.50% R/W (Exception)

Table 1: A comparison between different chipkill-correct and chipkill-
level ECC schemes for ×4 and ×8 DRAM chips. Schemes differ in
their error detection and correction capabilities, their amount of re-
dundant storage and chips, their access granularities, and the amount
of additional accesses they require. 1: Multi-ECC [22] is modified for
×4 chips by building a 16-bit symbol over 4 beats.

2.1.2 ×8 Chipkill-correct:
Wider ×8 DRAM chips save energy by activating fewer chips per

memory access for a given data channel width. However, as a chip
failure compromises a larger number of bits, ×8 chipkill is generally
more challenging and requires more redundancy than its×4 counter-
part. To correct a×8 chip error, the minimum redundancy (given by
the Singleton bound) is twice the correction size, giving a minimum of
25% redundancy for a 64-bit interface and 12.5% for a 128-bit inter-
face. Octuple Pin Correcting [19] ECC reaches this lower bound and
can correct single ×8 chip error, two concurrent ×4 chip errors, or
four concurrent pin errors using 16 pins of redundancy on 128-bit
interface.
There are additional recent academic approaches that target ×8

chipkill-level protection on a narrow channel. LOT-ECC [9] can cor-
rect most (127/128 or 99.2%) single chip errors on a 72-bit ECCDIMM
by using a 4-tiered ECC scheme. Due to its use of a 7-bit error de-
tecting checksum, however, 1/128 of chip errors remain undetected by
LOT-ECC and lead to silent data corruption. Multi-ECC [22] uses an
error localization and erasure code to enable chipkill-level protection
on a 72-bit ECC DIMM with 12.9% redundancy. The error localiza-
tion procedure of Multi-ECC is based on a 16-bit checksum, and it
fails to identify the faulty symbol with 2-16 probability, making 2-16

of single chip errors detectable-yet-uncorrectable.

2.2 Memory Compression
Memory compression has been actively researched and deployed in

caches and main memory to increase the available memory capacity
and reduce off-chip traffic. We introduce somepertinent notation and
then describe the most relevant prior work below.
In data compression, the compression ratio is defined as the ratio

between the size of the uncompressed and compressed data (higher
is better). High compression ratios are beneficial for stream or link-
based compression schemes. Block-based compression schemes in

main memory, however, have a fixed block size (e.g. a cache line) and
over-compression results in unused memory. Instead, a better crite-
rion for block-based main memory compression schemes is compres-
sion coverage [23]. Compression coverage is defined as the percentage
of blocks that are compressed to a given threshold. A compression ex-
ception [23] occurswhen a block is under-compressed such that its data
cannot fit in the target footprint. Coverage is related to the rate and
number of compression exceptions; compression exceptions should
be minimized as they incur additional overheads.

2.2.1 Per-word compression:
Some memory compression techniques are able to compress data

at a single-word (32 or 64-bit) granularity. Frequent value compres-
sion [24] targets a small set of 2–8 frequent values that collectively
occupy over 50% of memory entries in some benchmarks. It replaces
each frequent value by a small index to reduce space. Frequent pat-
tern compression [25] targets frequent patterns rather than frequent
values. Most of their patterns are basedon the fact that large data types
(e.g. 32 or 64-bit fixed-point numbers) often contain small values that
do not fully utilize their allocated storage. Frequent pattern compres-
sion saves storage by opportunistically converting such values to use
smaller data types.

2.2.2 Per-block compression:
As per-word compression applies a different compression tech-

nique to each word, it can spend a significant amount of stor-
age on fine-grained compression meta-data. Base-Delta-Immediate
(BDI) [26] compression exploits the small dynamic range of integer
and pointer types at a larger memory-block granularity. If a cache
line has homogeneous data types, values within the line are likely to
have similar values. BDI stores the first word as a base and compresses
all of the other words as differences from this base. For blocks with
mixed integer and pointer types, BDI adds another base value (implic-
itly assumed to be 0) that is used for integers while the original base is
employed for pointers. However, as the significand of floating-point
data has poor value locality due to normalization, the performance of
BDI suffers greatly on floating-point data.

2.2.3 Main Memory compression:
IBM MXT technology [27] is a word-granularity compressor that

relies on a derivative of adaptive dictionary based coding [28] to more
than double the effective main memory capacity. However, the draw-
backs of MXT include a large cache line size (1KB) to amortize its sig-
nificant dictionary cost, long compression/decompression latencies
from sequential processing and additional accesses to locate the com-
pressed data.

Linearly compressed pages (LCP) [23] compresses all cache lines
within a page to the same size, making address calculation straight-
forward and avoiding memory fragmentation. Upon a compression
exception, LCP allocates separate regions within the physical page
for exception flags and exception data. If the number of exceptions
overflows this allocated storage, LCP traps to operating system and
requests a bigger physical page for the virtual page.

MemZip [18] compresses cache lines for memory traffic reduction,
not for capacity savings. The compressed data are stored in the same
footprint as uncompressed data but memory traffic and energy are
reduced on a memory channel that supports fine-grained rank sub-
setting. Space savings can also be used to store meta-data, such as
data bus inversion for memory interface energy saving or ECC for
opportunistically stronger protection (though the potential for ECC
is largely unexplored). Other work also employs memory compres-
sion to store optional prefetch hints [17].
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Figure 2: Memory reads and writes with Frugal ECC.

Free ECC [29] combines compression and ECC for the last level
cache. Free ECC depends on customized tags to store compression
meta-data, however, and it combines BDI and FPC compression. The
lack of dedicated meta-data storage makes this approach inappropri-
ate for DRAM; later results (Section 6.2) also show the ineffectiveness
of BDI and FPC alone for a wide range of benchmark suites.
COP uses compression to enable ECC protection using non-ECC

DIMMs [30]. The specifics of the COP approach make its level of
error protection quite weak—significantly worse than SEC-DED—
and preclude it from being a viable alternative to FECC for high-
performance and high-availability systems. The COP ECC scheme
cannot be extended in a straightforward manner to chipkill-correct
levels of protection, even in its strongest organization, because the im-
plicitmanner inwhich it tracks the compressibility of amemory block
degrades the coverage of its ECC code. The compression scheme used
by COP also targets 6.25% redundancy and it provides poor compres-
sion coverage for the industry-standard 12.5% ECC footprint. There
is also a patent that describes the use of compression with non-ECC
DIMMs [31] without any evaluation or consideration of chipkill-level
protection.

3. FRUGAL ECC OVERVIEW
Frugal ECC (FECC) is a flexible and efficient ECC solution that

offsets ECC overheads through fine-grained compression. In con-
ventional single-tier ECC organizations, redundant information is
stored in dedicated memory devices that are accessed together with
the devices that store data. In this way, ECC does not impact perfor-
mance when compared to unprotected memory. FECC attempts to
approach the performance of these conventional organizations while
at the same time enabling more code design flexibility than just dedi-
cating the full redundancy of a single-tier code.
Figure 2 provides an overview of how FECC works. On a mem-

ory write, FECC losslessly compresses a data block to remove data-
inherent redundancy and free up space. If FECC successfully creates
enough space for the redundant ECC information, the compressed
data and ECC check bits are stored in the original memory footprint
of the uncompressed data. As its starting address does not change, a
memory block can still be randomly accessed and no additional ad-
dress translation procedure or level of indirection is needed. Further-
more, as with a conventional ECC, both data and all redundant in-
formation are accessed in unison. On a memory read, ECC checking
and decompression occur in parallel as ECC is computed on the com-
pressed data. If no errors are detected, the decompressed data is for-
warded to the last-level cache. Otherwise, ECC attempts to recover
any lost data and decompression repeats using the corrected data.

Not all blocks can be compressed to the reduced footprintwith loss-
less compression. Memory blocks that fail to meet the compression
threshold for a given ECC scheme result in a compression exception.
Upon a compression exception, FECCuses one full block and one par-
tial block to store the uncompressed data and ECC check bits. Each
compression exception degrades performance, because both thewrite
and any future read require two (potentially cached) accesses to mem-
ory instead of the single access used in a conventional ECC design.

As the ECC layouts for compressed and exception data differ, some
ECC meta-data is used to identify whether compression was success-
ful and to determine the resulting ECC layout. FECC stores the ECC
flag that indicateswhich layout is used alongwith the compressed data
and applies an additional level of error protection to the flag—this
higher level of protection is necessary because a compromised ECC
flag indicates that a wrong set of bits should be treated as ECC infor-
mation; using incorrect bits for ECC decoding degrades the protec-
tion level. We therefore use a 3 to 5-bit ECC flag in our design, as
described further in Section 4.

The key to the success of FECC is a design that minimizes excep-
tions while maintaining enough redundancy to meet reliability goals.
As such, FECC requires both state-of-the-art ECC and compression
schemes. In the following sections, we present how FECC can utilize
the most aggressive available ECC schemes and we present a novel
compression scheme, Coverage-oriented Compression, to increase its
compression coverage far beyondwhat is possiblewith prior compres-
sion techniques.

FECC statically reserves enough storage for its overflow data and
accesses this overflow storage as-needed using a deterministic ad-
dressing scheme. After a read, if the ECC flag identifies an exception,
FECC deterministically generates the address of its overflow data and
checks the LLC. Upon a miss, FECC fetches the overflow data from
DRAM (similar to VECC). The resultingworst-case latency is the LLC
miss penalty plus the round-trip delay between thememory controller
and LLC, but LLC caching reduces the latency in the common case.
Optimizations of storage through dynamic overflow allocation are
left for future work (Section 7).

4. ECC IN FRUGAL ECC
FECC can flexibly trade off performance for error protection using

different ECC schemes and by changing its target compression thresh-
old. We present several compelling configurations in the subsections
below. Before providing the details of ECC, we first briefly discuss
the encoding of the ECC flag. The ECC flag in FECC identifies which
of several possible ECC layouts is used for a particular block; the spe-
cific layout depends on the code design and the level of compression
achieved for a given block. In our current designs, we aim to free up
either 64 bits or 32 bits of data for ECC; we use the terms full and half-
compression to denote whether the full 64 bits needed for some ECC
codes are freed or whether only half that amount are reclaimed. An
error in the ECC flag can lead to undetected errors because data will
be interpreted as ECC information or vice versa.

As we describe below, different FECC schemes require a different
number of possible layouts. If there are only two layouts (uncom-
pressed / compressed), we use Triple-Modular-Redundancy (TMR) to
encode the 1-bit ECC flag; the flag is replicated twice and a majority
vote between the 3 copies determines its value. If there are three lay-
outs (uncompressed / half-compressed / fully-compressed), we need
to encode 3 different values. To guarantee a low error rate on the flag,
we require that the 3 codewords are different in at least 3 bits (with a
Hamming distance of 3) and use codewords of 4 or 5 bits. In all cases,
the bits used to store the ECC flag are distributed over different chips
so that a chip error corrupts only a single bit of the encoded flag, and is
therefore correctable. If two chip errors compromise a flag, a wrong



data layout may be selected for decoding. However, even in this case,
the codes used by FECC have very high detection coverage so that de-
coding with incorrect layout is very likely to result in a detected error.

4.1 x4 Chipkill FECC
FECC can employ×4 chipkill ECCs, which use×4 DRAMdevices,

to provide the same level of protection and a similar level of perfor-
mance without the use of redundant memory devices. We use AMD
chipkill [11] andQPC [19] as examples of×4 ECC. Both codes require
12.5% redundancy (8 bits on a 64-bit channel) and FECC can provide
this space by compressing a 512-bit block into 443 bits of data and
5 bits for the ECC flag. This 448b compression target determines the
rate of compression exceptions, and thus the impact on performance.
Therefore, to minimize performance degradation even further, we
treat the ECC code as a two-tiered ECC with a 6.25%-redundancy
first-tier error code (T1EC) that can detect any single-chip error and a
second-tier 6.25%-redundancy code (T2EC) that can correct any such
error.2 If a block compresses to the 448-bit threshold, the T1EC and
T2EC check bits are stored alongwith compressed data in the original
uncompressed data footprint. If a block is half-compressed to a size
in between 448 and 480 bits (including the 5b ECC flag), the T1EC is
stored along with compressed data but the T2EC is stored in a sepa-
rate block. If a block fails to compress to even a 480-bit footprint, part
of the uncompressed data is stored along with the T1EC and T2EC in
a separate memory block. These organizations are depicted in Fig-
ure 3. Note that we use a 4 or 5-bit encoding for the ECC flag to
ensure true chipkill-correct reliability—even if a chip with ECC flag
has errors, the ECC flag will be correctly decoded.
Multi-ECC was published as chipkill-level protection for ×8

DRAMdevices through erasure coding. It uses one redundant symbol
to detect any single ×8 chip error and employs a separate checksum
(which is shared among multiple lines to amortize storage overheads)
to locate the faulty chip. Once the error location is identified, it uses
erasure coding with the previous one-symbol redundancy to correct
the error. For ×4 chipkill, we modify Multi-ECC so that it builds a
16-bit RS symbol from 4 data transfer beats, reducing its main ECC
redundancy down to 6.25%; we maintain the same checksum mecha-
nism as in the original Multi-ECC design. FECCwith×4Multi-ECC
can access any block that is compressed to a 480-bit footprint without
accessing secondary storage. In the case of a compression exception,
the data and its ECC information are split over two blocks. This is
depicted in Figure 4. We use a 3-bit encoding of the ECC flag for
Multi-ECC because it has only two ECC layouts and triplicating the
1-bit flag can correct a single-bit error.

4.2 ×8 Chipkill FECC
The amount of redundancy required for the ×8 true chipkill-

correct OPC [19] is 25% (16 bits on 64-bit channel). As the coverage-
oriented compression of FECC primarily focuses on 12.5% redun-
dancy (see Section 5.2), FECC uses ECC-DIMMs with 12.5% redun-
dant devices to split the 25% ECC overhead between the redundant
chips and the space made available by compression. FECC with OPC
uses a two-tiered ECC so that if a block is compressed to less than 448
bits (443 bits of data and the 5-bit ECC flag), the compressed data and
the 128 bits of redundant information (T1EC+T2EC) is storedwithin
a single block of an ECC DIMM. If a 512-bit block is compressable
to 512 bits (some blocks fail due to compression and ECC flag over-
heads), the ECC flag, compressed data, and 64-bit T1EC are stored on
the ECC DIMM. In this common case, a write accesses an additional
memory location for the T2EC but error-free reads require only a sin-
gle memory access. If compression fails entirely, part of the uncom-
2TheT2EC codemust be combinedwith the T1EC to correct a single-
chip error; it is not independently capable of this level of correction.
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101 {28b delta} x 3 + {27b delta} x 12

1100 64b base (quadword) {54b delta} x 4 + {53b delta} x 3

1101 32b base {28b delta} x 2 + {27b delta} x 13

111016b B {14b delta} x 20 + {13b delta} x 11

11118b B {7b delta} x 53 + {6b delta} x 10 ...

Compression 
flag
(1 to 4-bit)

ID Comp.data ID Comp.data ID Comp.data
Compressed words (up to 440b)

Figure 5: Data layout for the 448-bit target (full compression).

0

64b base (double) {59b delta} x 2 + {58b delta} x 5100

101 {30b delta} x 5 + {29b delta} x 10

1100 64b base (quadword) {59b delta} x 1 + {58b delta} x 6

1101 32b base {30b delta} x 4 + {29b delta} x 11

111016b B {15b delta} x 21 + {14b delta} x 10

11118b B {8b delta} x 22 + {7b delta} x 41 ...

Compression 
flag
(1 to 4-bit)

ID Comp.data ID Comp.data ID Comp.data        
Compressed words (up to 474b)

Figure 6: Data layout for the 480-bit target (half compression).

pressed data, the T1EC, and T2EC are stored across the ECC chip and
also in a separatememory block. The×8 chipkill-levelMulti-ECC re-
quires 12.5% redundancy, so FECC can use a 64-bit non-ECCDIMM
with a 448-bit compression target (445 bits of data and the 3-bit ECC
flag); aswith the×4Multi-ECCconfiguration, the checksum informa-
tion is maintained separately as per the original Multi-ECC design.

5. COMPRESSION IN FRUGAL ECC
While most existing compression schemes focus on improving the

compression ratio, compressing data to as small a size as possible, left-
over space from an over-compression is left unused in FECC. In the
mean time, compression exceptions due to under-compression cost
FECCadditionalmemory accesses for overflowdata, consuming addi-
tional latency, bandwidth, and energy. Therefore, we develop a novel
compression scheme, Coverage-oriented Compression (CoC), which fo-
cuses onmaximizing coverage for themodest compression ratio goals
of FECC. The fundamental observation behind CoC is that we can
trade off compression ratio for compression coverage. A conven-
tional compression-ratio-oriented compression assigns short codes
to the most frequent values to reduce the average number of bits
needed to store a value. A key drawback of this assignment is that
the number of available “good” codes runs out quickly. Our coverage-
oriented compression, on the other hand, tries to cover asmany values
as possible with “acceptable” codes to maximize coverage. For exam-
ple, an ideal coverage-oriented compressionwould assignm-bit codes
to the most frequent 2m values, so that all of these values can be com-
pressed into an m-bit footprint.



CoC has three main components that together maximize cover-
age with acceptable implementation overheads: 1) fitting base + delta
compression for homogeneously-typed data, 2) exponent compres-
sion for floating-point data, 3) frequent word pattern compression for
heterogeneously-typed data. These three components are described
in detail below.

5.1 Fitting Base + Delta compression
Base + delta [26] exploits the small dynamic range typical of homo-

geneous integer data (e.g. arrays of integers) by storing the small dif-
ferences between same-typed values. It also supports a mixture of in-
tegers and pointers by using a Base-Delta-Immediate organization, as
described in Section 2.2.2. We increase delta sizes so that the overall
compressed size fits within the modest thresholds needed for FECC.
The top 4 organizations in Figure 5 and Figure 6 show the layouts
we use in CoC to represent integer data when targeting 448-bit and
480-bit layouts, respectively, with an ECC flag of three values. Each
organization includes the compression flag to indicate the type of com-
pression used (unlike the ECC flag, the compression flag does not re-
quire redundant encoding because it is already protected by ECC), a
base value, and a set of deltas. The 448-bit footprint is used to hold
a 4-bit compression flag and a 64-bit base value. The remaining 375
bits are used to store deltas for the other 7 64-bit values in the block,
which allows 54-bit deltas for 4 of the 7 64-bit values and 53-bit deltas
for 3 of the 7 64-bit values. By fully utilizing every bit of the available
footprint, Fitting Base+Delta (FBD) supports large delta sizes and com-
pressesmore cache lineswithout exceptions. For 64-bit data, the delta
sizes are large enough to compress amixture of 64-bit integers and 64-
bit pointers without the need for a separate Base-Delta-Immediate or-
ganization for pointers. We follow similar reasoning for maximizing
delta sizes to fit within the compression footprint for 32-bit, 16-bit,
and 8-bit integers, as shown in Figures 5 and 6.

5.2 Floating-point compression
Low-latency floating-point (FP) compression is difficult, as the nor-

malized floating-point significand can cause small value changes to
manifest as a very different binary representation. As the target com-
pression ratio in FECC is low (8:7 compression for 12.5% redun-
dancy), FP compression in CoC only targets the exponent and sign of
floating-point data. These fields often have higher value locality and
comprise a larger number of bits than our compression goals (18.8%
and 28.1% of double and single-precision numbers, respectively). Sim-
ilar to the use of difference coding for integer values, we can compress
the sign and exponentwith simple subtraction assuming that their val-
ues exhibit locality. The bottom organizations in Figure 5 and Fig-
ure 6 show how we compress homogeneously-typed floating-point
data using FBD compression.
The 448-bit footprint is used to hold a 1-bit compression flag and

a 64-bit base value with the remaining 378 bits evenly split to repre-
sent the 7 remaining FP values. Each 54-bit value represents the 1-
bit original sign, 52-bit original mantissa, and a 1-bit exponent delta
from the exponent of the base. While a 1-bit delta can cover only +0
and -1 changes in the exponent, our experiments show good coverage
with this scheme across a range of applications (see Section 6.2). For
single-precision floating-point numbers, we increase the delta size to
3 or 4 bits, because our experiments showed a need for a larger range
of exponent differences. For the 480b compression target (32-bit re-
dundancy for ECC), the compressed size for double-precision FP in-
creases to 58 or 59 bits and we use the additional bits to represent 6
or 7-bit exponent deltas.

Description Size (bits) ID

All zero 64-bit 0 001
Same as left 64-bit 0 1000

Same as left-left 64-bit 0 111110
Same as left-left-left-left 64-bit 0 11110

32-bit data, 32-bit zero 32 11010
2 x {16-bit sign-extension to 32-bit} 32 11011

32-bit sign-extension 32 1010
48-bit sign-extension 48 11100

44-bit delta from left 64-bit 44 11101
52-bit delta from left 64-bit 52 1001

12-bit delta from left-left 64-bit 12 1011
sign, exponent([63:52]) as 4-bit delta from bias (1023) 56 010
sign, exponent([63:52]) as 8-bit delta from bias (1023) 60 011
sign, exponent([63:52]) as 4-bit delta from left 64-bit 56 1100

Exponent([62:52]) as 3-bit delta from bias (1023) 56 111111
Incompressible 64-bit 64 000

Table 2: Per-word compression patterns, selected and variable-length
encoded based on SPEC CPU2006 benchmark profiling results with
the “test” inputs. The compression coverage of these selected patterns
appears to be robust across several benchmark suites and input sets
(see Section 6.2).

5.3 Frequent word compression
While FBD provides high compression

coverage for homogeneously-type data, it suffers from poor coverage
with heterogeneously-typed data (e.g., structs and classes). In partic-
ular, FBD works poorly with heterogeneously-typed data with mixed
fixed and floating-point numbers, as no single base is appropriate.

To augment this weakness, CoC employs a secondary compression
scheme that compresses at the 64-bit (QWORD) granularity. Each
QWORD is compressed as either a frequent pattern [25] or as a dif-
ference from a previous QWORD within its block. The per-word
compressor suite in CoC is selected from a large pool of compres-
sors with different bases, bit positions, and delta sizes. As per-word
compression is designed to complement FBD, we run the compres-
sors on blocks incompressible with 443b FBD from the SPECCPU
2006 benchmark suite using “test” inputs. We pick the top 16 com-
pressors based on their estimated coverage and assign their IDs using
Huffman coding to reduce the necessary amount of meta-data [32]. In
Section 6.2 we show that our choice of compressors and encoding is
robust across other benchmark suites and inputs. Table 2 shows the
complete list of the selected compressors.

6. EVALUATION
To understand the benefits of FECC and the tradeoffs involved, we

evaluate its reliability (in terms of both undetected and detected un-
correctable error rates), performance impact, and energy efficiency
in comparison to competing ECC schemes (including current com-
mercial approaches as well as academic designs). We then analyze
the effectiveness of CoC and demonstrate that it is both an excellent
match for the goals of FECC and superior to previously published
compression mechanisms in this context. We also analyze an imple-
mentation of key components of the CoC hardware. Throughout this
evaluation, we rely on the SPEC CPU 2006 [33, 34], PARSEC [35, 36],
SPLASH2X3 [37, 38], and NAS Parallel Benchmarks suites.4

For the reliability, performance, and energy consumption evalu-
ation, we compare 14 ECC configurations. The two commercial
3SPLASH2X is an update of the SPLASH2 benchmark suite [37] with
larger input sets [38]. It is distributed as part of PARSEC v3.0 [35].
4While themajority of benchmarks are evaluated, some programs are
omitted due to compilation issues or runtime errors.
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flag protection is evaluated assuming blocks are fully-compressed/half-
compressed/uncompressed with 70/20/10% probabilities, respectively.

1.E-08 
1.E-07 
1.E-06 
1.E-05 
1.E-04 
1.E-03 
1.E-02 
1.E-01 
1.E+00 

0.01 

0.1 

1 

1
3

6
b

 V
EC

C
 

1
2

8
b

 V
EC

C
 

7
2

b
 A

M
D

 

7
2

b
 Q

P
C

 

6
4

b
 F

EC
C

+M
u

lt
i 

6
4

b
 F

EC
C

+Q
P

C
 

1
4

4
b

 O
P

C
 

1
4

4
b

 V
EC

C
 

1
2

8
b

 V
EC

C
 

7
2

b
 L

O
T 

7
2

b
 M

u
lt

i 

7
2

b
 F

EC
C

+O
P

C
 

6
4

b
 F

EC
C

+M
u

lt
i 

1
3

6
b

 V
EC

C
 

1
2

8
b

 V
EC

C
 

7
2

b
 A

M
D

 

7
2

b
 Q

P
C

 

6
4

b
 F

EC
C

+M
u

lt
i 

6
4

b
 F

EC
C

+Q
P

C
 

1
4

4
b

 O
P

C
 

1
4

4
b

 V
EC

C
 

1
2

8
b

 V
EC

C
 

7
2

b
 L

O
T 

7
2

b
 M

u
lt

i 

7
2

b
 F

EC
C

+O
P

C
 

6
4

b
 F

EC
C

+M
u

lt
i 

128b 
data 

64b data 128b 
data 

64b data 128b 
data 

64b data 128b 
data 

64b data 

x4 chipkill x8 chipkill x4 chipkill x8 chipkill 

DUE in 1 yr SDC in 10 yrs 

SD
C

 P
ro

b
ab

ili
ty

 

D
U

E 
P

ro
b

ab
ili

ty
 

DUE in 1 yr SDC in 10 yrs 

(b) Probability of at least one detected uncorrectable error (DUE) and
at least one undetected error (SDC) for a systemwith 100K DIMMs, as-
suming only 1 or 2-chip errors. DUE rates decrease with FECC, as each
rank has fewer redundant chips. We were unable to find the decoding
details of S4SC-D4SD and omit it from these results.

Figure 7: Single-rank and full-system reliability with 1 and 2-chip errors across a range of ECC schemes.

configurations are the S4SC-D4SD strong chipkill-correct ECC on
a 144b channel (similar to [39]) and the AMD chipkill-correct ECC
on a 72b channel, both with ×4 DRAM devices. Bamboo-OPC is a
chipkill-correct code for×8 devices on a 144b channel and Bamboo-
QPC is a chipkill-correct ECC similar to, though slightly stronger
than, AMD chipkill. Virtualized chipkill is evaluated with 136b and
128b channels for ×4 devices and 144b and 128b channels for ×8
devices and follows the configuration described in Section 2. The
LOT-ECC and Multi-ECC chipkill-level schemes are also evaluated.
Finally, we evaluate four FECCvariants: chipkill-correct FECC+QPC
and chipkill-level FECC+Multi-ECC on 64b channels with ×4 de-
vices, chipkill-correct FECC+OPC on a 72b channel with×8 devices,
and chipkill-level FECC+Multi-ECC on a 64b channel with ×8 de-
vices. Note that the FECC configurations have the smallest number
of redundant DRAM devices, with the exception of the 128b VECC
configurations, though VECC is only defined for wide channels. Also
note that the 72b FECC+OPC is, to the best of our knowledge, the
only true chipkill-correct ECC that can use both a 72b channel and
×8 DRAM devices.

6.1 Reliability
To evaluate the reliability of chipkill-correct and chipkill-level

ECCs, we combine the FaultSim [40] and ErrorSim [19] Monte Carlo
fault and error injectors. FaultSim randomly injects faults into a sim-
ulatedmemory channel (using Poisson-distributed faults with empiri-
cally observed DRAM fault rates [3]) and ErrorSim generates random
errors on a cache-line-size block of memory based on the assumption
that all bits within the faulty region flip with a 50% probability. Erro-
neous blocks are tested using the appropriate Reed-Solomon or one’s
complement checksumdecoders to judgewhether each ECC code can
correct the error, detect the error but not correct it (DUE), or not
detect the error, potentially leading to silent data corruption (SDC).
If there are multiple codewords within a cache line (e.g., with AMD
chipkill), we assume that an error is detected if any of the codewords
reports a detectable error.
Figure 7 shows the reliability evaluation results. LOT-ECC and

Multi-ECC are not true chipkill-correct techniques and exhibit errors
evenwith only single-chip errors (see Section 2.1). LOT-ECCuses a 7-
bit checksum at a chip granularity and thus exhibits a high SDC prob-
ability, which is particularly problematic for large systems (Figure 7b).
Multi-ECCwith×8 devices has a 2-16 probability of uncorrectable er-
rors per codeword; with 2 codewords per 512b block, the probability
of aDUE is 2-15. Despite this problematic protection for single-device

errors, the overall reliability of Multi-ECC is very close to that of the
other good chipkill-level ECCs, such as AMD chipkill and QPC be-
cause the fault model does lead to some errors that span two or more
chips. Importantly, FECC shows almost identical protection as the
underlying ECC code it utilizes (i.e., QPC, OPC, or Multi×8), despite
using fewer devices. In fact, the best overall protection in terms of
both the DUE and SDC rates is provided by FECC+OPC, as it relies
on fewer devices and therefore exhibits fewer faults, assuming only
the faults reported by Sridharan and Liberty [3] can occur.

In contrast to the HPC-oriented high protection level of FECC,
COP falls far short. The implicit tracking of compressibility used by
COP converts chip, pin, and rank errors in incompressible blocks into
severe silent data corruption, because such errors will cause an er-
roneous decompression.5 If placed on Figure 7, the COP approach
would be orders of magnitude worse than the other schemes and both
DUE and SDC probabilities would be 100% in teh evaluated scale.

6.2 Compression Coverage
To test the compressibility of benchmarkmemory traffic and the ef-

fectiveness of coverage-oriented compression, we use a Pin-based [41]
cachemodel that implements Frugal compression at themainmemory
interface. Serial program versions are used, with a weighted average
over all program invocations taken in the case of fork-based multi-
programmed benchmarks. Every main memory read and write-back
is compressed6 and its size tallied.

Figure 8 shows the overall compression coverage results. Because
of the data dependence of CoC, we conduct compression coverage
experiments over a wide variety of benchmarks and input sets. The
harmonic mean behavior for each benchmark suite is given by a cor-
responding HM column. It can be seen that CoC compresses most
benchmarks well, with many benchmarks resulting in >99% com-
pression coverage. In general, integer benchmarks compress suffi-
ciently down to the 448b compression target, while many floating-
point benchmarks must resort to the 480b level of compression. This
is not unexpected, since the compressibility of floating-point numbers
is limited (see Section 5.2 for more details).

5The COP evaluation does not consider anything except single-bit er-
rors, so it does not capture this effect; however, it is reflected in our
more-complete reliability evaluation.
6Stratified sampling [42] is used to reduce the experimental runtime
of SPEC with the “ref” input set and PARSEC/SPLASH2X with the
“native” input sets. Fast-forward, detailed warming, and execution pe-
riods of 16M, 2M, and 1M instructions are used, respectively.
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E/T/R in SPECCPU stand for test/train/ref input set.
T/D/S/M/L/N in PARSEC stand for test/dev/small/medium/large/native input set.
S/W/A/B in NPB stand for small/workstation/A/B input set.
S/M/L/N in SPLASH2X stand for small/medium/large/native input set.

Figure 8: Compression coverage for 64-bit and 32-bit redundancy for the SPECCPU2006, PARSEC, NPB, and SPLASH2X benchmark suites.
Benchmarks are sorted within each suite by descending memory traffic.

The proper compression target varies according to the target ECC
scheme (see Section 4 formore details). On a 64b rankwith×4DRAM
chips, FECC+Multi uses a 480b target coverage for both reads and
writes and FECC+QPC uses a 448b target fully-compressed blocks
and 480b for half-compressed blocks. On a 72b rank with×8 DRAM
chips, FECC+Multi uses a 448b target and FECC+OPC uses 448b
and 512b targets full-compressed and half-compressed blocks, respec-
tively. (Note that Figure 8 gives results only on a 64b rank; com-
pression coverage trends over a 72b rank are similar but they are not
shown in the interest of brevity.)
Whilemost benchmarks and input sets compress satisfactorilywith

CoC, a few benchmarks showmore lackluster compressibility. Ferret
performs a content-based similarity search of images using JPEG im-
ages as query inputs. The inherent compressibility of these images
is poor, perhaps leading to the low CoC coverage. Similarly, VIPS
is an image processing system. Within PARSEC, the input images to
VIPS are formatted in a native file format [43] and they happen to en-
code pixels in a non-IEEE754 floating-point format (using the “labq”
encoding). It is expected that this mismatch of floating-point formats
leads to the lackluster CoC coverage, butmore investigation is needed.
Sjeng is an artificial intelligence program for chess. Itmakes heavy use
of heterogeneous mixed-size data structures and it is expected that
the data structures are not aligned or coalesced properly for CoC to
fully capture the value locality within them. Word-level compression
does adapt somewhat to the heterogeneous nature of Sjeng—without
it the compression coverage is dismal instead of lackluster, and en-
abling word-level compression increases the coverage by 5.54× and
6.25× at 448b and 480b, respectively. Perlbench is heavily multipro-
grammed through repeated forks; some of these program invocations
are highly compressible and others compress poorly. More investiga-
tion is needed to find out the source of the poorly compressible bench-
mark segments.
The average compressibility of programs in Figure 8 is high; this

high compression coverage is a direct result of our coverage-oriented

Processor 2GHz OoO core
L1 cache 16kB Inst/64kB Data, 2-way, 2-cycle hit latency, 2 MSHR entries

L2 cache 2MB, 64 or 128B line, 8-way (7-way for Multi-ECC), 20-cycle hit latency,
20 MSHR entries (40 for V-ECC, Multi-ECC, and FECC), stride prefetcher

DRAM DDR3-1600 / 2 rank / 2 channel for 64b data and 1 channel for 128b data
Simulation 400M cycles after 800M cycles of fast-forwarding

Energy Micron 2Gb DDR3-1600 parameters + Micron model [44]

Overheads

+1 RD / +1 WRQ latency (S4SC-D4SD, VECC, AMD, and Multi-ECC)
+4 RD / +4 WRQ latency (QPC, OPC, and LOT-ECC)
+2 RD / +3 WRQ latency (FECC+Multi)
+4 RD / +5 WRQ latency (FECC+QPC and FECC+OPC)

Table 3: Simulation parameters for the performance and energy eval-
uation.

compression scheme and it would not have been possible using prior
fine-grained compression approaches. Figure 9 demonstrates this
through compression coverage experiments for PARSEC and NPB
using BDI and FPC compression (see Section 2.2 for more details)
as well as fitting base + delta compression alone, which represents
CoC without word-granularity compression. The results show that
CoC always performs as well or better than the best of the other ap-
proaches, in some cases (like LU) outperforming all others. It is also
readily apparent how insufficient BDI and FPC compression are for
floating-point data—the floating-point compressors used for Frugal
ECC are necessary for HPC benchmark suites such as NPB. Corre-
spondingly, the compression approach used by Free ECC (combining
BDI and FPC) [29] would not suffice for a large range of benchmark
programs.

6.3 Performance and DRAM Energy
Wemeasure the performance impact of different ECC schemes us-

ing the Gem5 simulator [45] and estimate DRAM energy consump-
tion using the Micron DDR3 power model [44]. Because of the long



0 
0.2 
0.4 
0.6 
0.8 

1 

FP
C

 
B

D
I 

FB
D

 
C

o
C

 

FP
C

 
B

D
I 

FB
D

 
C

o
C

 

FP
C

 
B

D
I 

FB
D

 
C

o
C

 

FP
C

 
B

D
I 

FB
D

 
C

o
C

 

FP
C

 
B

D
I 

FB
D

 
C

o
C

 

FP
C

 
B

D
I 

FB
D

 
C

o
C

 

FP
C

 
B

D
I 

FB
D

 
C

o
C

 

FP
C

 
B

D
I 

FB
D

 
C

o
C

 

FP
C

 
B

D
I 

FB
D

 
C

o
C

 

stc can fer fla frq bls vip bdt HM 

PARSEC.L 

C
o

m
p

. C
o

ve
ra

ge
 

448b compression 480b compression 

0 
0.2 
0.4 
0.6 
0.8 

1 

FP
C

 
B

D
I 

FB
D

 
C

o
C

 
FP

C
 

B
D

I 
FB

D
 

C
o

C
 

FP
C

 
B

D
I 

FB
D

 
C

o
C

 
FP

C
 

B
D

I 
FB

D
 

C
o

C
 

FP
C

 
B

D
I 

FB
D

 
C

o
C

 
FP

C
 

B
D

I 
FB

D
 

C
o

C
 

FP
C

 
B

D
I 

FB
D

 
C

o
C

 
FP

C
 

B
D

I 
FB

D
 

C
o

C
 

FP
C

 
B

D
I 

FB
D

 
C

o
C

 
FP

C
 

B
D

I 
FB

D
 

C
o

C
 

sp ua lu bt cg mg ft is ep HM 

NPB.B 

C
o

m
p

. C
o

ve
ra

ge
 

Figure 9: A compression coverage comparison between CoC and
prior memory compression schemes.
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Figure 10: Thememory traffic and compression coverage results of all
benchmarks measured with Pin and the four representative detailed
simulations selected.

runtime of the simulator, we do not evaluate the performance of all
the benchmarks for which we obtained compression results. Instead,
we focus on four benchmarks that represent different points in the
space of parameter values that most-strongly impact the performance
and energy behavior of FECC; each of the chosen benchmarks is fast-
forwarded 400M instructions and is then simulated for 200M instruc-
tions.
The important parameters affecting the performance and energy

of FECC are the rate at which off-chip data requests are made and the
frequency of compression exceptions. Figure 10 depicts how the dif-
ferent benchmarks whose coverage we evaluate with Pin map across
these two dimensions; we use last-level cache misses per thousand in-
structions (MPKI) to represent the memory-intensity of each appli-
cation and its compression coverage to represent the expected com-
pression exception rate. We choose Sphinx from SPEC 2006 (denoted
SPEC.spx) as representative of benchmarks with low traffic and high
compression coverage, which are ideal for FECC. Libquantum from
SPEC 2006 (SPECFP.lq) and EP from NPB (NPB.ep) are representa-
tive of benchmarks with high coverage / high traffic and low coverage
/ low traffic, respectively; both of which we expect to also perform
well with FECC. As an example for an application that stresses FECC,
we evaluate SP fromNPB (NPB.sp), which has poor compression cov-
erage and also significant traffic. Note that these cases donot precisely

match the extreme points observedwith the Pin-based evaluation, but
they are as close as we were able to find in detailed simulation.

We perform detailed single-core simulations with the system pa-
rameters summarized in Table 3. We assume a 2 memory-cycle la-
tency for CoC compression/decompression and 1 cycle latency for
ECC encoding and decoding after the necessary data are fully avail-
able (see Section 6.4). While multi-core simulations are more realistic
and put more pressure on memory bandwidth, we choose to present
single-core simulations because FECC degrades performance mostly
due to the extra latency it incurs and because single-core results allow
for a clearer presentation of behavior and insights. The baseline IPC
(instructions per cycle on the single core) andmemory-only energy for
our four benchmarks, measured for the AMD chipkill configuration
are: 0.82 IPC / 0.23J for Libquantum, 1.33 IPC / 0.12J for Sphinx3,
1.24 IPC / 0.13J for NPB.ep, and 1.71 IPC / 0.10J for NPB.sp.

Figure 11 shows the estimated execution time and DRAM en-
ergy consumption over the chosen simulation interval of the selected
benchmarks. Execution times are shown in blue bars (left y-axis) nor-
malized to the AMD chipkill configuration and the relative energy is
shown as a red line (right y-axis). As expected, the FECC configu-
rations exhibit essentially no impact on performance with the ideal
SPEC.spx and also with the low-traffic NPB.ep.

The performance of SPECFP.lq is impacted by type of code used
and channelwidth, but as expected, the addition of FECChas a negligi-
ble impact (<1%) because of the high compression coverage. The only
configuration for which FECC has ameasurable impact is for NPB.sp,
which has meaningful traffic and poor compression coverage; the 64b
FECC+Multi configuration exhibits a 3.7% performance degradation
because it requires a 480b level of compression for all reads andwrites.
FECC+OPC does not show a similar degradation because it relies on
a 72b channel and does not add any latency for read operations, re-
gardless of the compression achieved. Energy results are similar, and
the FECC variants slightly improve energy efficiency over their non-
frugal counterparts for chipkill-level codes. FECC+OPC is the only
chipkill-correct code that that can use both a 72b channel and×8 de-
vices, and because of this it requires only about half the energy con-
sumption of ECCs with competing levels of protection.

6.4 CoC Hardware
Frugal compression requires some hardware to compress and de-

compress each memory transfer. We design a simple implementa-
tion of the main parts of the compressor in Verilog and conclude that
FECC requires a very small amount of chip area and is readily im-
plementable in the 2-cycle latency assumed by the performance and
energy evaluation. Figure 12 shows an overview of the compression
process, broken into two stages. The first stage implements the block
and word-granularity compressors through subtraction and equality
testing. The output of this first-stage logic is the compressed data
for each constituent compressor and the validity of each compression
(whether it captures all of the data in its allotted space). This compres-
sor and validity data is fed into a second stage that chooses the most
appropriate compressor and outputs the final result.

The first-stage compressor logic is expected to consume the ma-
jority of the area for the Frugal compressor. A straightforward, be-
havioral implementation of this first-stage logic easily achieves a 1ns
latency. The block and word compressor consume about 4,383 and
5,866NAND2 gates’ worth of chip area, respectively.7 Combined, the
block and word compressor consume about 25%more chip area than

7These delay and area estimates are found through standard-cell syn-
thesis using the Synopsys toolchain and the 40nmTSMCstandard cell
library [46, 47] but are presented in a technology-independent man-
ner.
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Figure 11: Execution time and DRAM energy consumption normalized to AMD chipkill.

a single 32-bit fixed-pointmultiplier—an insignificant area compared
to an entire processor.
The second compressor stage consists of a priority encoder with

a small amount of ID generation logic, and is expected to easily and
cheaply fit within the remaining 1ns of compression latency. The Fru-
gal decompressor is expected to consume less area than the compres-
sor, because it does not need to speculatively perform all constituent
compression schemes in parallel and can effectively use less internal
arithmetic. Also, because decompression uses addition instead of sub-
traction for all delta operations, logic sharing between the different-
width compression schemes should be a straightforward and poten-
tially lucrative optimization.

7. DISCUSSION
Two promising future optimizations for FECC organizations are

described below.

Optimizing Performance: Compression Prediction.
FECC performs two sequential memory accesses when reading a

compression-exception block whose auxiliary block is not already
cached. While such problematic memory reads are not so common as
to override the performance benefits of FECC (as evidenced by Sec-
tion 6.3), it would further improve the performance of FECC to ac-
cess both the main memory location and the auxiliary overflow data
in parallel. As such, a future performance optimization includes a dy-
namic compression-exception predictor whose purpose is to prefetch
the overflow data for incompressible lines before they return from
memory.

Optimizing Storage: Dynamic Overflow Mapping.
While FECC focuses on improving performance and energy effi-

ciency by fetching data and ECC information with a single access, it
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Encoder

Block compressor
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Figure 12: A block diagram of the Frugal compressor. Two combi-
national logic structures implement the block and word-granularity
compressors, respectively. The validity information from each con-
stituent compressor is used to select themost appropriate scheme and
to format the output data. As a 64-bit DDRmemory provides 128 bits
(16B) of data per cycle, the two 8B words are compressed in parallel.

can be extended to also save storage by dynamically allocating auxil-
iary blocks only when needed. Our current FECC organizations re-
serve space for overflow data conservatively—redundant space is stat-
ically allocated even for memory blocks that compress well. However,
as compression exceptions are rare andoverflow storage is rarely used,
storage overheads can be significantly reduced. One potential prob-
lem with such dynamic overflow allocation is how to best reclaim un-
needed redundant storage after it is no longer needed (once its cor-
responding block is rewritten without a compression exception). We
expect periodic scrubbing to be a good approach, but have not con-
sidered it in this paper. Future work may include the complete evalu-
ation of such dynamic overflow mapping for use in systems where a
balance between performance and storage is important. An orthogo-
nal approach for reducing second-tier ECC storage, ECC Parity [48],
could be applied in lieu of, or in addition to this optimization and it
should be included in a future evaluation. COP ECC describes an or-
ganization with pointer-based dynamic exception overflow tracking
to reduce ECC storage overheads [30]. The COP scheme may not be
applicable to Frugal ECC, however, as this pointer is very costly to
protect with chipkill or chipkill-level protection.

8. CONCLUSION
In this paper, we make three main important contributions. First,

we describe and evaluate new ECC schemes that provide superior
reliability with lower overheads than prior work and with minimal
impact on performance. By combining novel compression and meta-
data encoding and management techniques, our Frugal ECC designs
are able to match the memory access characteristics of conventional
ECC designs while requiring fewer, or even no, redundant DRAM
devices. Second, we show the importance of co-designing a com-
pression scheme with its intended use and introduce a new coverage-
oriented compression technique that far exceeds the capabilities of
previously-published fine-grained compression mechanisms, espe-
cially for floating-point intensive programs. Third, we provide a thor-
ough and fair comparison of the overheads and reliability characteris-
tics of several recently-published chipkill-level ECC schemes and con-
clude that while their error correction capabilitiesmatch those of true
chipkill-correct, these chipkill-level designs have a much higher risk
of silent-data corruption when evaluated with published fault mod-
els [3, 4, 5].
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